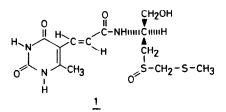
0040-4039/78/0701-2437502.00/0

APPROACHES TO THE ANTIBIOTIC SPARSOMYCIN. AN EFFICIENT SYNTHESIS OF THE CYSTEINOL MONO-OXODITHIOACETAL MOIETY

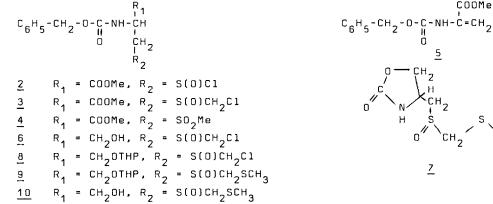

H.C.J. Ottenheijm[×] and R.M.J. Liskamp

Department of Organic Chemistry, University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands

(Received in UK 19 April 1978; accepted for publication 12 May 1978)

Sparsomycin (<u>1</u>), a fermentation product¹ of <u>Streptomyces</u> <u>sparsogenes</u>, has attracted much attention because of its biological activity and its unique -S(O)CH₂-SCH₃ moiety. It displays a broad spectrum of in vitro activity against bacteria and shows antifungal activity². Its activity appears to be related to its ability to inhibit protein synthesis by blocking the ribosomal peptidyl transferase function 3 . In addition sparsomycin shows antitumor activity 2 . Recently, the blocking of the peptidyl transferase function⁴ and antitumor activity 5 have been studied with sparsomycin analogs in which the S(O)CH $_{2}$ SCH $_{3}$ moiety had been replaced by more easily accessible side chains.

The structure 1 has been proposed by Wiley and MacKellar⁶. Recently, this structure has been substantiated by the synthesis of S-deoxo-sparsomycin by us⁷ and others^{4,5}. However, a synthesis of <u>1</u>, including the mono-oxodithioacetal side chain in the cysteinol moiety, has not yet appeared in literature. We wish to report an efficient synthesis of this part of the structure, which opens a practical route to sparsomycin (1) and analogs for further biochemical and pharmacological studies.


Treatment of N-benzyloxycarbonyl L-cystine according to a procedure developed by Venier et al.¹⁰ gave the corresponding α -chloro-

sulfoxide 3^9 . With an undried etheral CH $_2$ N $_2$ solution up to 30% of 2 was converted into the sulfinate ester 4. It was found that substitution of Cl in $\frac{3}{2}$ by -SCH $_3$ had to occur after reduction of the ester function: direct treatment of 3 with CH_3SNa gave the dehydro amino acid derivative 5. The ester function of 3 could be reduced selectively with LiBH, in monoglyme yielding the alcohol <u>6</u>¹¹. Separation by column chromatography on silica gel (Merck 60-H) using $CH_2Cl_2/MeOH$ (94/6, v/v) as eluent gave the R_cS_s/R_cR_s diastereomers of <u>6</u>

2437

in 34% and 21% overall yield from Coo-cystine methylester.

Direct conversion of the alcohol $\underline{6}$ to the desired mono-oxodithioacetal $\underline{10}$ failed; treatment of <u>6</u> with CH_3SNa^{12} in CH_3OH at 40° for 24 hrs gave the cyclic urethane 7^{11} in 30% yield after column chromatography. To circumvent this cyclisation reaction the alcohol function of 6 (mixture of diastereomers) was protected with the tetrahydropyranyl group to yield $\underline{8}^9$ quantitatively. Treatment of 8 with 1.2 equivalent CH_3SNa in C_2H_5OH for 2 hrs at 60⁰ gave the mono-oxodithioacetal 9. This was converted into the desired compound 10^{11} by refluxing ethanol in the presence of a trace of HCl. Separation by column chromatography as described above, gave the two possible diastereomers R_S_/R_R in 34% and 30% overall yield from $\underline{6}$. On basis of the pmr spectrum $[\delta(CD_2Cl_2) 7.35 (s, 5H, C_{BH_5}), 5.82 (br, 1H, NH), 5.10 (s, 2H, C_{BH_5}CH_7), 4.20$ (m, 1H, CH), 3.77 (m, 4H, \underline{CH}_2OH and \underline{SCH}_2SO), 3.10 (m, 2H, \underline{CH}_2), 2.29 (s, 3H, SCH_a)] we are inclined to consider the configuration of the major component as enantiomeric with that of sparsomycin (1), which has S configuration at the chiral carbon atom, but unknown configuration at the S(0) function. COOMe

So far, we could not find suitable reaction conditions to remove selectively the N-protecting group. Work is in progress to solve this problem in order to complete the synthesis of sparsomycin (1) and its analogs.

References

1. A.D. Argoudelis and R.R. Herr, Antimicrob. Ag. Chemother. 780 (1962).

- A.D. Argoudells and R.K. Herr, Antimicrob. Ag. Chemother. 760 (1962).
 S.P. Owen, A. Dietz and G.W. Camiener, <u>ibid</u>, 772 (1962).
 R.E. Monro and D. Vazques, J. Mol. Biol. <u>28</u>, 161 (1967).
 C.K. Lee and R. Vince, J. Med. Chem. <u>21</u>, 176 (1978).
 C.C.L. Lin and R.J. Dubois, <u>ibid</u>, <u>20</u>, <u>337</u> (1977).
 P.F. Wiley and F.A. MacKellar, J. Amer. Chem. Soc. <u>92</u>, 417 (1970); P.F. Wiley and F.A. MacKellar, J. Org. Chem. <u>41</u>, 1858 (1976).
 H.C.J. Ottenheijm, S.P.J.M. van Nispen and M.J. Sinnige, Tet. Letters 1899 (475). (1976).
- 8. I.B. Douglass and R.V. Norton, J. Org. Chem. 33, 2104 (1968).
- 9. This compound gave satisfactory spectral data.
- 10. We wish to thank Dr. C.G. Venier for bringing this reaction to our attention; C.G. Venier, H.-H. Hsieh and H.J. Barager, J. Org. Chem. <u>38</u>, 17 (1973). 11. This compound gave satisfactory spectral data and elemental analysis.
- 12. K. Ogura and G. Tsuchihashi, Chem. Comm. 1689 (1970).